
Zensheu  Chang 
Jet  Propulsion  Laboratory,  California  Institute of  Technology 

Mail  Stop  67-1  19 
Pasadena,  California  9  1  109 



Abstract. This  paper  is  concerned  with  the  calculation of elastic wavefields in strongly 
heterogeneous  meQa  containing scatterers of  arbitrary  shape  and size. A hybrid  method  is 
described in which  the  elastodynamic  field  within a finite  region  enclosing  the  scatterers is 
modeled by finite  elements  while the field  away  from  this  regron  is  represented by means of a 
suitable  set of wavefunctions.  Application of a variational  principle  and  the  continuity  conditions 
at the interface  between  the  two  regions  lead  to a system of linear  equations that is  solved by 
standard  techniques. The hybrid  method  extends  the  applicability of the finite element  method  to 
wave  propagation  problems  in  unbounded  media  by  rigorously  modeling  the  radiation  field.  The 
method  is  used  to calculate of  the  elastodynamic  field in a plate of finite thickness  and infinite 
lateral  dimensions  containing  geometric  discontinuities. 



Introduction. Calculation  of  elastic  wavefields in heterogeneous  media  is of great  interest  in  a 
variety  of  applications  including  strong  ground  motion  simulation  for  earthquake  resistant 
design,  seismic  tomography  to  determine  the  earth's  internal  constitution,  nondestructive 
evaluation to detect  and  characterize  flaws in critical  structural  components, etc. There  is  a  vast 
amount  of  literature  on  the  interaction of elastic  waves  with  single  as  well as multiple 
inhomogeneities  and no attempt  will  be  made  to it here. It should  be  noted  that  asymptotic 
theories  valid  at  low  or  high  frequencies  have  been  the  mainstay  of  early work  on  the  subject  and 
they  have  provided  valuable  physical  insight  into  the  qualitative  features of the  interaction 
phenomena.  However  the  asymptotic  techniques  lose  their  accuracy in the  intermediate 
frequency  range  where  the  interaction effects are  most  pronounced  more  interesting  and  more 
useful  for  practical  applications.  Analytical  techniques  that  can  be  applied  in  the entire 
frequency  range  are  limited to relatively  simple  geometry  of  the  scatterers, e.g., cylinders  and 
spheres  [see e.g., Knopoff,  1959a,b;  Gilbert  and  Knopoff,  1959,  196 1 ;  Mal  and  Bose,  1974; 
Yang  and  Mal,  19941.  Modem  applications  require  the  availability of calculation  models  that 
can  simulate  wave  interaction  phenomena  in m e l a  containing  scatterers of arbitrary  shape  and 
size at all  frequencies. 
Although  the finite element  method ( E M )  provides  a  convenient  and  powerful  means  for 
representing  the  inhomogeneous regon, its  conventional  implementation  presents  difficulty in 
modeling  the radated field  external to the  discretized  region. An alternative procedure is to 
employ  a time domain  formulation  in  a  finite regon if  the  interest  is  limited  to  small time 
windows.  However,  the  observed  dissipative  properties of most  materials  indicate  that  it is 
difficult,  if  not  impossible  to  express  their  constitutive  equations  in  the  time  domain. Thus, for 
calculations that are valid  for  large  time  windows  and  where  the  dissipative  properties of the 
materials are significant,  the  frequency  domain  formulation  is  preferable.  Other  potentially 
useful  semi-numerical  methods  include the boundary  integral equation method  [see, e.g., 
Dravinsh, 19841  and  the  volume  integral  equation  method w a l  and  Knopoff,  1967;  Lee  and 
Mal,  19951. 
In  what follows  a  recently  developed  hybrid  technique  incorporating  the  widely used finite 
element  method ( E M )  near  the  inhomogeneity  and  analytical  representation  of  the  wave 
functions in the  far  field  is  described. The hybrid  technique  can  extend  the  range  of  application 
of  FEM to unbounded  media  without the need to discretize  large  regions  [see, e.g., Goetschel, 
Dong  and  Muki,  19821.  In  this  paper  the  hybrid  method  is  applied to the  problem  of  a  plate 
containing  geometrical  discontinuities as an  illustrative  example. 
The  interaction of Lamb  waves  with  a free edge  of  a  plate was  first  studied by Torvik  [1967], 
where  a  variational  techmque  was  used to derive  the  modal  coefficients. In addition,  the 
partition of energy  between  different  modes  above  the  first  cutoff  frequency  was  studied.  Using 
the  projection  method,  Gregory  and  Gladwell  [1983]  studied  the  free  edge  reflection  problem 
and  extended  the  frequency  range  investigated by Torvik  [1967]. In both  cases,  the  first 
symmetric  mode  Lamb  wave was  used as the  incident  wave.  The  anti-symmetric  case  was  not 
considered  in  either  study.  The  conventional FEM  was applied  to  plates  with  defects by Alleyn 
and  Cawley  [1992],  and  a  hybrid  method  was  used by Datta,  Al-Nassar  and  Shah  [1991] to 
calculate  the  waves  scattered by a  crack  within  a  plate. In this  paper  the  two-dimensional (in- 
plane)  problem of Lamb  wave  propagation in a  plate  of  finite  thickness  and  infinite  lateral 
dimensions  containing  defects on one of its  surfaces  is  considered.  A three dimensional  problem 
of  the  plate  has  been  considered in Chang  and Mal [ 19991. 

3 



The Hybrid Technique. The  geometry  of  the  general  problem  is  depicted in Fig. 1, where  the 
material  (henceforth  referred to as  the inclusion) bounded  by  the surface S has  significantly 
different  properties  from  that  outside S (the matrix). The  inclusion  itself  can  be  heterogeneous, 
anisotropic  and  viscoelastic. The matrix  is  assumed  to  be  homogeneous,  isotropic  and 

Figure 1. The  hybrid  model  of  the  general  wave  scattering  problem. 

viscoelastic  for  the sake of simplicity.  The  waves are assumed to be generated by sources 
external  to  the  inclusion. 
Let u(x, w) denote  the  Fourier  time  transform of the  displacement  vector  at  a  point x within  the 
solid.  Then u(x, 0) is, in  general,  a  complex,  frequency  dependent  function and is  the  solution 
of a  time  harmonic  boundary  value  problem  in  which  all  field  variables  have  the  time 
dependence e""'. The time domain  solution  can  be  easily  obtained  through  inversion  using FFT 
or other suitable  algorithms. In what  follows we consider  time  harmonic  problems  only,  and 
suppress  the  common  time  dependence as well  as  the  frequency  dependence  in all field  variables. 
The Cartesian  components of the  stress  tensor, z, are related to the  components  of  the 
displacement  through  the  appropriate  constitutive  equation.  The  displacement  vector u satisfies 
Navier's  equations  and  is  continuous  everywhere  except at the  source.  The  stress  vector  is 
continuous  across  all  surface  elements  including  those  where  a  sharp  transition  in  material 
properties may occur. In addition, for an  unbounded  matrix,  the  field  must  represent  outgoing 
waves  or  satis@  a  radiation  condition  at  infinity. 
In order  to  illustrate  the  frequency-domain  hybrid  method  for  unbounded meQa, assume  that  a 
plane  time  harmonic  wave  is  incident on the  irregularly  shaped  inclusion  perfectly  bonded to the 
matrix at the  interface S, and  introduce  a  surface B containing  the  inclusion as the FEM mesh 
boundary.  The  region  inside B is discretized  and  analyzed by the finite element  method  and  the 
behavior of the  region  outside B is represented by a  set of global wave functions. The  continuity 
of the displacement  and  traction  on  the  mesh  boundary  must  be  satisfied  through  proper  choice 
of  the  amplitudes  of the global  functions. 
The  global  functions are the  displacements  which  satis@  the  governing equation and  the 
boundary  conditions of the  same  problem  in  absence  of  the  inclusion,  and  will be denoted by g,, 
(n =1, 2, ...). Assume  that  the  displacements  associated  with  the  incident  wave u1 and  the 
scattered  wave us outside S can  be  expressed  in  the  forms 

D 

ut = C a n s ,  
n=l 

(I 

us = C b n g n  
n= I 

where  p,  q  are  integers to be  selected  based  on  needed  accuracy,  the  constants an are known, and 
the  constants h n  are to be determined  from  the  continuity  conditions  on the mesh  boundary.  The 
finite element  formulation  is  based  on the minimization of the  functional 
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where p is the  density  of  the  material, a superstar  implies  complex  conjugation, f is  the  body 
force  and n is  the unit normal  vector  to S. In the  conventional  finite  element  technique,  either  the 
displacement Ui or  the  stress  vector Zqnj is prescribed on S, but  the  boundary  conditions  for  the 
present  problem  are  of a different type, as will be seen  below. 
Using  the  conventional  finite  element  discretization  of  the  field  inside  the mesh  boundary, B, and 
applying  the  variational  principle  based  on  the  minimization  of (2), a system  of  linear  equations 
relating  the  nodal  displacements  to the nodal  forces  is  obtained.  For  convenience, we divide 
both the  displacement  and  the  force  vectors  into two parts: one part  is  associated  with  the  nodes 
interior to the mesh  boundary,  the  other  part  is  for  the  boundary  nodes. The linear  equations  can 
be expressed  in  block  matrix  notation as follows: 

['bi Dbbl{ ub} = { 2 1  O i i  Dib ' i  

where  the  subscript b refers  to  the  boundary,  and  the  subscript i refers  to  the  interior, { v) is the 
column  vector  of  the  nodal  displacements  and F is  the  column  vector of the  nodal  forces.  The 
matrix [Dii] relates the interior  nodal  Qsplacements  to  the  interior  nodal  forces, [DM,] relates 
those on the boundary, [Dib] and [ D b i ]  are the  coupling  matrices  between  the  interior  and 
boundary  nodes. 
For the time being,  we  only  consider  the field variables at the  nodes on the  mesh  boundary. 
From (lb), we  may derive  the  values of both  the  displacement  and  the  force  vectors 
corresponding  to  the  incident wave at the  nodes  on  the  mesh  boundary, by substituting  the 
coordinates  of the boundary  nodes into the  global  functions.  Thus 

n=l 

n=l 

where {G,,} is  the  vector  composed  of  the  values  of  the  global  functions g,, on  the  mesh 
boundary,  and {F,} is  the  associated  force  vector. 
Using each displacement  vector {G,,} in (4) as the  boundary condition on S, and  by the 
conventional  finite  element  approach, we obtain  the  corresponding  boundary  forces: 

where  the  vector { Vnb) is  the  result  of  using  the  displacement  vector {G,,) in (4) as the boundary 
condition.  The  subscript  "FEM"  implies that the  vector  is  derived  from the interior  finite 
element. 
Similarly, we  may derive  the  displacement  and  force  vectors  associated  with  the  scattered field: 

n=l 
a 

n=l 



Clearly  the  displacement  continuity  across  the  mesh  boundary  is  automatically  satisfied, since 
we  have  used  the  displacement  vectors  derived  from  the  global  functions as the  boundary 
conditions  for  the  discretized  region.  Thus  the  only  continuity  condition  that  remains to be 
satisfied  is  the  nodal  force  condition.  There are two sets of  force  vectors  on  the  mesh  boundary, 
one  from  the  global  functions,  the  other  from  the  finite  element  model;  each  set  contains  both  the 
incident  and  the  scattered  parts.  The  next step is to find  a  set  of  unknown  amplitudes bn which 
minimizes  the  difference  between  the  two  force  vectors.  Equating the boundary  nodal  force 
vectors  fiom  the  global  functions  to  those  fiom  the  finite  element  method, we obtain 

n=l n=L 

This  leads  to  a  system of linear  equations  for b, of the form 

which  can  be  expressed in matrix  form  as 
[Al,xq{blq,, = M,,, 

In (12) the  elements of the  matrix [A]  and  the  vectors (6) and {c} are  all  complex,  m  is  the  total 
number  of  nodes  on the mesh  boundary,  and q is  the  total  number  of  global  functions  used to 
represent  the  scattered  field.  Since m is  usually  greater  than q, the unknowns bn can be solved  by 
applying  the  least  square  method,  which  minimizes  the dfference between  the left and  right  hand 
sides  of (12). This  is  equivalent to minimizing the difference  between  the  displacement  fields 
just inside  and just outside  the mesh  boundary. This minimization  leads to the standard  linear 
system 

where  the  superstar  indicates  complex  conjugate,  and  the  superscript  T  indicates  a  transpose. 
Once  the  global  fknctions  are known the  system of equations  (13)  can be solved by means of 
standard  techniques.  The  hybrid  formulation  has  been  applied to the  solution of problems of 
special  interest  in  the  inspection  of  aging  aircraft  structures  involving  Lamb  wave  propagation  in 
a  plate  with  geometric  discontinuities.  Representative  results  are  presented  below. 
The Global Functions for the Plate. For the  plate  Lamb  waves  are  used as the  global  functions. 
In the  two-dimensional case the  motion  due  to  Lamb  waves  can  be  decomposed  into  symmetric 
and  antisymmetric  modes. The displacement  components U and V associated  with  the  two 
modes in the  plate  occupying  the  region - 00 < x < 00, - H < y < H, (Fig. 2) can be expressed  in 
the  following  form (see, e.g., Mal  and  Singh,  1991): 
Symmetric  Mode 

U(x,y) = [ikcosh(qy)- ~ C c o s h ( ~ y ) ] e ' ~  



w 
k, = -, J = 1,2 

cJ 

c1 and c2 are the P and  S-wave  speeds  in  the  solid.  The  associated  dispersion  equation  is 

Antisymmetric  Mode 

U ( x , y )  = [ik sinh(qy) - ~ D s i n h ( ~ y ) ] e ' ~  

V( X, y )  = [ q cash( q y )  + ikD cash( %y)]e& 

Figure 2.  The  geometry of the  plate. 

where 
( 2 k 2  - ki)sinh(qH) 

2 i k 3  sinh( Q H )  
D = -  

The  associated  dispersion  equation  is 
tad(@) - ( 2 k 2  - k i ) 2  
tanh(qH) - 4 k 2 q $  

The  global  function g,, is the  vector (U, V} calculated  at k = k, , where k, is  the  n-th  root of the 
dispersion  equation ( 1  7) or (20).  The  expressions  for  the  global function gven in (14)  and ( 1  8) 
are valid on the  right  hand  side of the  mesh.  For  the  left  hand side of the  mesh,  the  global 
functions are simply gn*, the  complex  conjugate of g,,. It  should  be  noted  that  the  roots of (17) 
and (20) may  be  real or complex.  At  a  gwen  frequency,  these  equations  have  a  finite  number of 
real  roots  and an infinite  number of pure  imagmary  or  complex  roots.  The  real  roots are 
associated  with  the  propagating  modes;  their  amplitude  remains  constant at points  away  from  the 
source. The complex  roots  are  associated  with  nonpropagating  modes;  their  amplitude  decays 
exponentially  with  distance from the  source. In the  present  problem,  the  geometrical  boundaries 
of  the  defects  act as virtual  sources  for  both  propagating  and  nonpropagating  waves. In the 
vicinity  of  the  defects,  the  contribution to the  wavefield  from the two types  of  waves  are 
comparable,  but  the  relative  strength of the  nonpropagating  modes  decreases  away  from  the 
defects. It has  been  shown by Vasudevan  and  Mal (1985), that  the effect of the  nonpropagating 
modes  can  be  ignored at points  about  twice  the  plate  thickness  away  from the source. Thus if the 
mesh  boundary  is  located  at  least twice the  plate  thickness  away  from  the  defects,  the 
nonpropagating  modes  can be ignored  outside  the mesh  boundary  and  only  the  propagating 
modes  can  be  used as the  global  functions.  The  material  properties of the  plate  used  in  the 
numerical  calculation  are  shown  in  Table 1,  and  the  dispersion curves for  symmetric  and 
antisymmetric Lamb  waves  are  shown  in  Fig. 3. . 
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Table 1 .  The  properties  of  the  aluminum  piate  used in the  numerical  calculations. 

Thickness, 2H Density p S-wave  speed, c2 P-wave  speed, C I  

(mm) (g/cc) (Km/sec) (Km/sec) 
1.6 2.8 3.1 6.4 

It should  be  noted  that at a  fixed  frequency there are a  small  number  of  propagating  modes  and 
an additional  mode is added  at  each  cutoff  frequency. 
Lamb  waves in plates with defects 
In order to illustrate  the  application  of  the  hybrid  technique  to wave scattering  problems,  the 
propagation  of  Lamb  waves in a  semi-infinite  plate  with  a  surface  defect  under  plane  strain 
conditions  is  considered  next.  The  plate  is  divided  into two parts by the  mesh  boundary  as 
shown  in  Fig. 4. The regon between  the  mesh  boundary  and  the free edge of the plate  is 
analyzed by the finite element  method,  while  the  behavior  of  waves  in  the  semi-infinite  plate on 
the  left  side  of  the  mesh  boundary  is  represented by the  Lamb  wave  modal  expansion. 
Application of the  continuity  conditions  across the mesh  boundary  leads to a  system of over- 
determined,  complex,  linear  equations,  which  is  solved by the  least  square  method.  The  mesh 
boundary  is  located at a  distance  of  ten  times  the  plate thckness away  from the free edge.  The 
fundamental  symmetric (SO) and  anti-symmetric (&) modes  are  used as incident  waves. 
We first  present  some  of  our  calculated  results  in  absence  of  the  defect.  The  fundamental 
symmetric (SO) and  anti-symmetric (&) modes are used as incident  waves.  Clearly,  an  incident 
symmetric  mode  is  reflected  as  symmetric  modes  only  and  an  anti-symmetric  mode  is  reflected 

Fig. 4. The  hybrid  model of the  plate  with  a  surface  defect. 

as anti-symmetric  modes.  Moreover, in the  frequency  range  below the first cutoff  frequency 
(approximately, 0.97MHz for  the  antisymmetric  mode  and 1.48 MHz for  the  symmetric  mode), 
only  the  corresponding  fundamental  mode  is  reflected,  and  the  amplitude  is  the  same as that of 
the  incident  wave.  However,  at  higher  frequencies,  higher  modes  are  induced  in  addition to the 
fundamental  mode,  and  the  global  functions  must  include  an  adequate  number of these  modes. 
The  number of modes to be included  depends on the frequency  range  of  interest.  As an example, 
if  the  incident  wave is the SO mode,  and  then  p = 1, and  q  is  the  number  of  possible  modes  at  the 
maximum  frequency of interest. 
The  real  and  imaginary  parts  of  the  vertical  displacement  on  the  top  surface  calculated by means 
of  the  hybrid  method  for  both  symmetric  and  anti-symmetric  cases at low  frequencies  are  shown 
in  Fig. 5. At these  frequencies,  the  displacement  is  pure  imaginary  for  the  symmetric  case, as 
shown in the  figure,  while  for  the  anti-symmetric case the  real  and  imaginary  parts of the 
displacement are equal.  Both  of  these  cases  represent  standing  waves  within the plate.  It  can also 
be  seen  that  for  the  anti-symmetric  case,  the  displacement  is  larger  at  the  free  edge  and  becomes 
sinusoidal at distances  away  from  the  free  edge.  This  is  because  the  non-propagating  modes are 
also induced  when  the  incident  wave  strikes  the  free  edge;  their  influence  decreases  away  from 
the  edge. In contrast  the dsplacement at  the  free  edge  is  almost  nonexistent  in  the  symmetric 
case.  This  is  because  the  symmetric  non-propagating  modes  have  very little effect  on  the 
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reflected  field  and  the  incident  and  reflected  propagating  modes  cancel  each  other  at  the  free 
edge. 
The  real  and  imaginary  parts  of  the  reflected  waves are plotted  in  Fig. 6. It can be seen  that at 
frequencies  below  the  first  cutoff,  the  symmetric  reflected  waves suffer a  phase  reversal as 
compared to the  incident  wave. For the  anti-symmetric  case,  the  phase shift is 90°, but  it changes 

Fig. 5. The normal  surface  displacement  calculated  from  the  hybrid  method 

rapidly  near  the  first  cutoff  frequency of 0.97 MHz. Similar  rapid  change  in  phase  occurs  in  the 
symmetric  case at 1.48 MHz, the  corresponding  cutoff  frequency.  These effects have  also  been 
observed by Torvik [ 19671 in the  symmetric  case. An interesting  feature  of  the  solution  is  the 
behavior  of  the  waves  at  the  cutoff  frequencies.  The  vertical  displacement at the symmetric 

Fig. 6. Real  and  imaginary  parts  of  the surface displacements  due to the  reflected  waves. 

resonant  frequency of 1.48 MHz is  shown in Fig. 7. It  can  be  seen  that  the  displacement at the 
free edge  is  about 7 times  higher  than  that  away  from  the  free  edge. 
The  semi-infinite  plate  with  surface defects is  considered  next.  Defects  of  various  widths  and 
depths  are  introduced at the  top  surface of the  plate.  The  fundamental  symmetric  mode  is  used as 

Fig. 7. Top surface  displacement at the cutoff  frequency, 1.48 M H z ;  symmetric  case. 

the  incident  wave;  the  waveform  is  assumed to consist  of  a  train  of  cosine  waves  modulated by a 
Gaussian  envelope.  The  reflected  waveforms  calculated  from  the  hybrid  method are shown  in 
Figs. 8 and 9. It  can  be  seen  that  the  depth  of  the  defect  has  a  stronger  effect  on  the  reflection 
than  the  width. 

All reflections  have  one  feature  in  common;  the  reflected  signal can be  roughly  divided 
into  three  parts:  the  first  part  is the reflection  from  the  defect,  the  second  part  is  the  wave 
transmitted  across  the  defect,  then  reflected by the  free  edge  and  propagating  across  the  defect 
again to the  transducer.  The  last  part is the wave  reflected by the free edge  twice  and  then 
propagating  across  the  defect.  Theoretically, an infinite  number  of  wave trains are reflected 

Fig. 8. The  normal  surface  displacement due the  incident  and  reflected  waves  for a wide  and 
shallow  defect. H = 1.6 mm. 

Fig, 9. The  normal  surface  displacement  due  the  incident  and  reflected  waves  for  a  narrow 
defect. H = 1.6 mm. 

between  the  defect  and  the  free  edge.  All  except  the  three  signals  described  above  are  too  small 
to  be  identified in the  received  signal, since only  a  very  small  portion of the  energy  is  reflected 
each  time  the  wave  comes  across the defect. 



It should  be  noted  that  in  both  figures  8  and 9, the  reflected  waves  have  larger  amplitude  than  the 
incident  waves.  The  increase in amplitude is caused by the  interference  between  the  reflected 
waves from the  right  edge  of  the  plate  and  the  defect. In order to verify  that  the  amplitude 
increase in the  reflected  field  does  not  violate  the  energy  principle,  the  energy  flux  through  a 
vertical  surface S,  (x = constant)  associated  with  the  waves  are  calculated  from  the  formula 

The  energy  flux  for each wave  normalized  to  that  in  the  incident  wave  is  shown  in  Figs.  10  and 
11. It  can  be  seen  that  the  total  energy  flux  is  unity  in  both  cases,  implying that the energy  is 
conserved. The results  also  show  that  when  the  symmetric  incident  waves are reflected  from  the 
free  edges  with  defects,  most of the  energy  remains  in  the  symmetric  mode;  only  a  small  portion 
is  converted  into  antisymmetric  mode. 
Concluding  remarks. The  hybrid  technique  described  in  this  paper  is  a  rigorous  extension of the 
conventional  finite  element  method to wave  propagation  problems  in  extended  media.  It  takes 
full  advantage  of  the  capability  of the conventional  finite  element  method  in  modeling  complex 
media  and  uses  the  classical  analytical  solutions of canonical  problems to remove  the difficulty 
associated  with  the FEM in  modeling  the  radiated  field.  In  addition to the  plate  problems 
discussed  here,  the  method  can  be  applied to wave  propagation  problems  in  laterally 
heterogeneous  layered earth models. 

Fig.  10.  The  energy  flux  across  a  vertical  surface  in  the  plate  with  the  wide  defect. 

Fig. 1 1 .  The  energy  flux  across  a  vertical  surface  in  the  plate  with  the  narrow  defect. 
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Inclusion 

Figure 1 .  The  hybrid  model of the  general  wave  scattering  problem. 
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Figure 2. The geometry of the plate. 
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Figure 3. Lamb wave dispersion curves. 



Figure 4. The hybrid  model of the  plate with a surface defect. 
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Figure 5. Real  and  imaginary  parts of the  surface  displacement  calculated  from  the 
global-local  finite  element  method. 
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(a) Symmetric  case,  the  first  cutoff  frequency is about 1.48 MHz. 
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(b) Anti-symmetric  case,  the  first  cutoff  frequency is about 0.97 MHz. 

Figure 6. Real  and  imaginary  parts of the  surface  amplitude of the  reflected  waves. 
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Figure 7. Top surface  displacement at the  cutoff  frequency 1.48 MHz, symmetric case. 
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Figure 8. Displacement due to the  incident  and  reflected  waves  from  a  wide  surface 
defect. (H = 1.588 mm) 
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Figure 9. Displacement due  to  the  incident  and  reflected  waves  from a narrow surface 
defect. (H = 1.588 mm) 
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Figure 10. Partition  of  energy  in  various  reflected  modes  for a wide  surface  defect. 
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Figure 1 1. Partition of  energy in various reflected  modes  for a narrow  surface defect. 


